The Island Model Genetic Algorithm: On Separability, Population Size and Convergence

نویسندگان

  • Darrell Whitley
  • Soraya Rana
  • Robert B. Heckendorn
چکیده

Parallel Genetic Algorithms have often been reported to yield better performance than Genetic Algorithms which use a single large panmictic population. In the case of the Island Model genetic algorithm, it has been informally argued that having multiple subpopulations helps to preserve genetic diversity, since each island can potentially follow a di erent search trajectory through the search space. It is also possible that since linearly separable problems are often used to test Genetic Algorithms, that Island Models may simply be particularly well suited to exploiting the separable nature of the test problems. We explore this possibility by using the in nite population models of simple genetic algorithms to study how Island Models can track multiple search trajectories. We also introduce a simple model for better understanding when Island Model genetic algorithms may have an advantage when processing some test problems. We provide empirical results for both linearly separable and nonseparable parameter optimization functions.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Island Model Genetic

Parallel Genetic Algorithms have often been reported to yield better performance than Genetic Algorithms which use a single large panmictic population. In the case of the Island Model Genetic Algorithm , it has been informally argued that having multiple subpopulations helps to preserve genetic diversity, since each island can potentially follow a diierent search trajectory through the search s...

متن کامل

A New Approach to Solve N-Queen Problem with Parallel Genetic Algorithm

Over the past few decades great efforts were made to solve uncertain hybrid optimization problems. The n-Queen problem is one of such problems that many solutions have been proposed for. The traditional methods to solve this problem are exponential in terms of runtime and are not acceptable in terms of space and memory complexity. In this study, parallel genetic algorithms are proposed to solve...

متن کامل

Island Model genetic Algorithms and Linearly Separable Problems

Parallel Genetic Algorithms have often been reported to yield better performance than Genetic Algorithms which use a single large panmictic population. In the case of the Island Model Genetic Algorithm, it has been informally argued that having multiple subpopulations helps to preserve genetic diversity, since each island can potentially follow a di erent search trajectory through the search sp...

متن کامل

استفاده از یک روش ترکیبی PSO – GA جهت جایابی بهینه خازن در سیستمهای توزیع

In this paper, we have proposed a new algorithm which combines PSO and GA in such a way that the new algorithm is more effective and efficient.The particle swarm optimization (PSO) algorithm has shown rapid convergence during the initial stages of a global search but around global optimum, the search process will become very slow. On the other hand, genetic algorithm is very sensitive to the in...

متن کامل

Sequential and Mixed Genetic Algorithm and Learning Automata (SGALA, MGALA) for Feature Selection in QSAR

Feature selection is of great importance in Quantitative Structure-Activity Relationship (QSAR) analysis. This problem has been solved using some meta-heuristic algorithms such as: GA, PSO, ACO, SA and so on. In this work two novel hybrid meta-heuristic algorithms i.e. Sequential GA and LA (SGALA) and Mixed GA and LA (MGALA), which are based on Genetic algorithm and learning automata for QSAR f...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1998